Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
J Nanobiotechnology ; 22(1): 193, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643134

RESUMO

Pyroptosis, a novel type of programmed cell death (PCD), which provides a feasible therapeutic option for the treatment of tumors. However, due to the hypermethylation of the promoter, the critical protein Gasdermin E (GSDME) is lacking in the majority of cancer cells, which cannot start the pyroptosis process and leads to dissatisfactory therapeutic effects. Additionally, the quick clearance, systemic side effects, and low concentration at the tumor site of conventional pyroptosis reagents restrict their use in clinical cancer therapy. Here, we described a combination therapy that induces tumor cell pyroptosis via the use of ultrasound-targeted microbubble destruction (UTMD) in combination with DNA demethylation. The combined application of UTMD and hydralazine-loaded nanodroplets (HYD-NDs) can lead to the rapid release of HYD (a demethylation drug), which can cause the up-regulation of GSDME expression, and produce reactive oxygen species (ROS) by UTMD to cleave up-regulated GSDME, thereby inducing pyroptosis. HYD-NDs combined with ultrasound (US) group had the strongest tumor inhibition effect, and the tumor inhibition rate was 87.15% (HYD-NDs group: 51.41 ± 3.61%, NDs + US group: 32.73%±7.72%), indicating that the strategy had a more significant synergistic anti-tumor effect. In addition, as a new drug delivery carrier, HYD-NDs have great biosafety, tumor targeting, and ultrasound imaging performance. According to the results, the combined therapy reasonably regulated the process of tumor cell pyroptosis, which offered a new strategy for optimizing the therapy of GSDME-silenced solid tumors.


Assuntos
Neoplasias , Piroptose , Humanos , Piroptose/fisiologia , Microbolhas , Neoplasias/tratamento farmacológico , Apoptose , Hidralazina/farmacologia , Hidralazina/uso terapêutico
2.
Exp Neurol ; 375: 114746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428714

RESUMO

Cerebral small vessel disease (CSVD) is a cerebral vascular disease with insidious onset and poor clinical treatment effect, which is related to neuroinflammation. This study investigated whether lipopolysaccharide-induced intestinal inflammation enhanced the level of pyroptosis in the brain of rats with CSVD. The bilateral carotid artery occlusion (BCAO) model was selected as the object of study. Firstly, behavioral tests and Hematoxylin-eosin staining (HE staining) were performed to determine whether the model was successful, and then the AIM2 inflammasome and pyroptosis indexes (AIM2, ASC, Caspase-1, IL-1ß, GSDMD, N-GSDMD) in the brain were detected by Western blotting and Immunohistochemistry (IHC). Finally, a single intraperitoneal injection of lipopolysaccharide (LPS) was used to induce intestinal inflammation in rats, the expression of GSDMD and N-GSDMD in the brain was analyzed by Western blotting and to see if pyroptosis caused by intestinal inflammation can be inhibited by Disulfiram, an inhibitor of pyroptosis. The results showed that the inflammatory response and pyroptosis mediated by the AIM2 inflammasome in BCAO rats were present in both brain and intestine. The expression of N-GSDMD, a key marker of pyroptosis, in the brain was significantly increased and inhibited by Disulfiram after LPS-induced enhancement of intestinal inflammation. This study shows that AIM2-mediated inflammasome activation and pyroptosis exist in both brain and intestine in the rat model of CSVD. The enhancement of intestinal inflammation will increase the level of pyroptosis in the brain. In the future, targeted regulation of the AIM2 inflammasome may become a new strategy for the clinical treatment of CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Piroptose , Animais , Ratos , Encéfalo/metabolismo , Dissulfiram/farmacologia , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia
3.
CNS Neurosci Ther ; 30(3): e14697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38544474

RESUMO

AIMS: Neuroinflammation and pyroptosis are key mediators of cerebral ischemia/reperfusion (I/R) injury-induced pathogenic cascades. BRCC3, the human homolog of BRCC36, is implicated in neurological disorders and plays a crucial role in neuroinflammation and pyroptosis. However, its effects and potential mechanisms in cerebral I/R injury in mice are unclear. METHODS: Cellular localization of BRCC3 and the interaction between BRCC3 and NLRP6 were assessed. Middle cerebral artery occlusion/reperfusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were established in mice and HT22 cells, respectively, to simulate cerebral I/R injury in vivo and in vitro. RESULTS: BRCC3 protein expression peaked 24 h after MCAO and OGD/R. BRCC3 knockdown reduced the inflammation and pyroptosis caused by cerebral I/R injury and ameliorated neurological deficits in mice after MCAO. The effects of BRCC3 on inflammation and pyroptosis may be mediated by NLRP6 inflammasome activation. Moreover, both BRCC3 and its N- and C-terminals interacted with NLRP6, and both BRCC3 and its terminals reduced NLRP6 ubiquitination. Additionally, BRCC3 affected the interaction between NLRP6 and ASC, which may be related to inflammasome activation. CONCLUSION: BRCC3 shows promise as a novel target to enhance neurological recovery and attenuate the inflammatory responses and pyroptosis caused by NLRP6 activation in cerebral I/R injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Isquemia Encefálica/metabolismo , Enzimas Desubiquitinantes , Infarto da Artéria Cerebral Média/patologia , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Traumatismo por Reperfusão/metabolismo
4.
Pathol Res Pract ; 256: 155224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452584

RESUMO

Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sepse , Humanos , Piroptose/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética
5.
Am J Chin Med ; 52(2): 453-469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490806

RESUMO

Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.


Assuntos
Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Saponinas , Triterpenos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Caspase 3/metabolismo , Sirtuína 1/metabolismo , Gasderminas , Doxorrubicina/efeitos adversos , Caspase 1/metabolismo
6.
Immunity ; 57(3): 429-445, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479360

RESUMO

Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.


Assuntos
Apoptose , Gasderminas , Humanos , Animais , Camundongos , Necrose/metabolismo , Apoptose/fisiologia , Piroptose/fisiologia , Morte Celular , Inflamassomos/metabolismo , Proteínas Quinases/metabolismo
7.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396860

RESUMO

Hypoxia-induced neuronal death is a major cause of neurodegenerative diseases. Pyroptosis is a type of inflammatory programmed cell death mediated by elevated intracellular levels of reactive oxygen species (ROS). Therefore, we hypothesized that hypoxia-induced ROS may trigger pyroptosis via caspase-dependent gasdermin (GSDM) activation in neuronal cells. To test this, we exposed SH-SY5Y neuronal cells to cobalt chloride (CoCl2) to trigger hypoxia and then evaluated the cellular and molecular responses to hypoxic conditions. Our data revealed that CoCl2 induced cell growth inhibition and the expression of hypoxia-inducible factor-1α in SH-SY5Y cells. Exposure to CoCl2 elicits excessive accumulation of cytosolic and mitochondrial ROS in SH-SY5Y cells. CoCl2-induced hypoxia not only activated the intrinsic (caspases-3, -7, and -9) apoptotic pathway but also induced caspase-3/GSDME-dependent and NLRP3/caspase-1/GSDMD-mediated pyroptosis in SH-SY5Y cells. Importantly, inhibition of caspase-3 and -1 using selective inhibitors ameliorated pyroptotic cell death and downregulated GSDM protein expression. Additionally, treatment with a ROS scavenger significantly suppressed caspase- and pyroptosis-related proteins in CoCl2-treated SH-SY5Y cells. Our findings indicate that hypoxia-mediated ROS production plays an important role in the activation of both apoptosis and pyroptosis in SH-SY5Y neuronal cells, thus providing a potential therapeutic strategy for hypoxia-related neurological diseases.


Assuntos
Cobalto , Neuroblastoma , Piroptose , Humanos , Piroptose/fisiologia , Caspase 3/metabolismo , Gasderminas , Espécies Reativas de Oxigênio/metabolismo , Hipóxia , Linhagem Celular Tumoral , Caspase 1/metabolismo
8.
Ecotoxicol Environ Saf ; 273: 116106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377782

RESUMO

Silica nanoparticle (SiNP) exposure induces severe pulmonary inflammation and fibrosis, but the pathogenesis remains unclear, and effective therapies are currently lacking. To explore the mechanism underlying SiNPs-induced pulmonary fibrosis, we constructed in vivo silica exposure animal models and in vitro models of silica-induced macrophage pyroptosis and fibroblast transdifferentiation. We found that SiNP exposure elicits upregulation of pulmonary proteins associated with pyroptosis, including NLRP3, ASC, IL-1ß, and GSDMD, while the immunofluorescence staining co-localized NLRP3 and GSDMD with macrophage-specific biomarker F4/80 in silica-exposed lung tissues. However, the NLRP3 inhibitor MCC950 and classical anti-fibrosis drug pirfenidone (PFD) were found to be able to alleviate silica-induced collagen deposition in the lungs. In in vitro studies, we exposed the fibroblast to a conditioned medium from silica-induced pyroptotic macrophages and found enhanced expression of α-SMA, suggesting increased transdifferentiation of fibroblast to myofibroblast. In line with in vivo studies, the combined treatment of MCC950 and PFD was demonstrated to inhibit the expression of α-SMA and attenuate fibroblast transdifferentiation. Mechanistically, we adopted high throughput RNA sequencing on fibroblast with different treatments and found activated signaling of relaxin and osteoclast differentiation pathways, where the expression of the dysregulated genes in these two pathways was examined and found to be consistently altered both in vitro and in vivo. Collectively, our study demonstrates that SiNP exposure induces macrophage pyroptosis, which subsequently causes fibroblast transdifferentiation to myofibroblasts, in which the relaxin and osteoclast differentiation signaling pathways play crucial roles. These findings may provide valuable references for developing new therapies for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Relaxina , Animais , Fibrose Pulmonar/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dióxido de Silício/toxicidade , Relaxina/metabolismo , Relaxina/farmacologia , Piroptose/fisiologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Fibroblastos , Fibrose , Macrófagos
9.
Cell Death Dis ; 15(2): 118, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331883

RESUMO

Diabetic retinopathy is a common microvascular complication of diabetes and a leading cause of blindness. Pyroptosis has emerged as a mechanism of cell death involved in diabetic retinopathy pathology. This study explored the role of GSDME-mediated pyroptosis and its regulation by TNFSF15 in diabetic retinopathy. We found GSDME was upregulated in the progression of diabetic retinopathy. High glucose promoted GSDME-induced pyroptosis in retinal endothelial cells and retinal pigment epithelial cells, attributed to the activation of caspase-3 which cleaves GSDME to generate the pyroptosis-executing N-terminal fragment. TNFSF15 was identified as a binding partner and inhibitor of GSDME-mediated pyroptosis. TNFSF15 expression was increased by high glucose but suppressed by the caspase-3 activator Raptinal. Moreover, TNFSF15 protein inhibited high glucose- and Raptinal-induced pyroptosis by interacting with GSDME in retinal cells. Collectively, our results demonstrate TNFSF15 inhibits diabetic retinopathy progression by blocking GSDME-dependent pyroptosis of retinal cells, suggesting the TNFSF15-GSDME interaction as a promising therapeutic target for diabetic retinopathy.


Assuntos
Ciclopentanos , Diabetes Mellitus , Retinopatia Diabética , Fluorenos , Humanos , Piroptose/fisiologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Caspase 3/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Diabetes Mellitus/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
10.
Front Immunol ; 15: 1338125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380334

RESUMO

Macrophages play a critical role in innate immunity, with approximately 90% of the total macrophage population in the human body residing in the liver. This population encompasses both resident and infiltrating macrophages. Recent studies highlight the pivotal role of liver macrophages in various aspects such as liver inflammation, regeneration, and immune regulation. A novel pro-inflammatory programmed cell death, pyroptosis, initially identified in macrophages, has garnered substantial attention since its discovery. Studies investigating pyroptosis and inflammation progression have particularly centered around macrophages. In liver diseases, pyroptosis plays an important role in driving the inflammatory response, facilitating the fibrotic process, and promoting tumor progression. Notably, the role of macrophage pyroptosis cannot be understated. This review primarily focuses on the role of macrophage pyroptosis in liver diseases. Additionally, it underscores the therapeutic potential inherent in targeting macrophage pyroptosis.


Assuntos
Hepatopatias , Piroptose , Humanos , Piroptose/fisiologia , Macrófagos , Inflamação/metabolismo , Hepatopatias/metabolismo , Imunidade Inata
11.
PeerJ ; 12: e16818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348100

RESUMO

Objective: Cerebral infarction is the main cause of death in patients with cerebrovascular diseases. Our research aimed to screen and validate pyroptosis-related genes in cerebral infarction for the targeted therapy of cerebral infarction. Methods and results: A total of 1,517 differentially expressed genes (DEGs) were obtained by DESeq2 software analysis. Gene set enrichment analysis results indicated that genes of middle cerebral artery occlusion (MCAO) mice aged 3 months and 18 months were enriched in pyroptosis, respectively. Differentially expressed pyroptosis-related genes (including Aim2, Casp8, Gsdmd, Naip2, Naip5, Naip6 and Trem2) were obtained through intersection of DEGs and genes from pyroptosis Gene Ontology Term (GO:0070269), and they were up-regulated in the brain tissues of MCAO mice in GSE137482. In addition, Casp8, Gsdmd, and Trem2 were verified to be significantly up-regulated in MCAO mice in GSE93376. The evaluation of neurologic function and triphenyltetrazolium chloride staining showed that the MCAO mouse models were successfully constructed. Meanwhile, the expressions of TNF-α, pyroptosis-related proteins, Casp8, Gsdmd and Trem2 in MCAO mice were significantly up-regulated. We selected Trem2 for subsequent functional analysis. OGD treatment of BV2 cell in vitro significantly upregulated the expressions of Trem2. Subsequent downregulation of Trem2 expression in OGD-BV2 cells further increased the level of pyroptosis. Therefore, Trem2 is a protective factor regulating pyroptosis, thus influencing the progression of cerebral infarction. Conclusions: Casp8, Gsdmd and Trem2 can regulate pyroptosis, thus affecting cerebral infarction.


Assuntos
Infarto da Artéria Cerebral Média , Piroptose , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Glicoproteínas de Membrana/genética , Proteína Inibidora de Apoptose Neuronal , Piroptose/fisiologia , Receptores Imunológicos
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 287-291, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387936

RESUMO

Pyroptosis is a programmed death mediated by activated caspase and Gasdermin family proteins, characterized by cell swelling, cytosolysis and release of inflammatory factors. Leukemia is a malignant disease characterized by abnormal differentiation and proliferation of hematopoietic stem cells, thus seriously threating human health. In recent years, it has been found that the transformation, proliferation, metastasis and treatment response of leukemia cells are closely related to pyrodeath. Pyroptosis provides a new perspective for the study of leukemia. This paper reviews the types and molecular mechanisms of pyroptosis, the role of pyroptosis in the occurrence and development of leukemia and the treatment of leukemia, so as to provide some references for further study of the relationship between pyroptosis and leukemia, in order to provide a new strategy for the treatment of leukemia.


Assuntos
Leucemia , Piroptose , Humanos , Piroptose/fisiologia , Proteínas de Neoplasias/metabolismo , Caspases , Leucemia/terapia
13.
Semin Immunol ; 71: 101865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232665

RESUMO

Intestinal homeostasis is achieved by the balance among intestinal epithelium, immune cells, and gut microbiota. Gasdermins (GSDMs), a family of membrane pore forming proteins, can trigger rapid inflammatory cell death in the gut, mainly pyroptosis and NETosis. Importantly, there is increasing literature on the non-cell lytic roles of GSDMs in intestinal homeostasis and disease. While GSDMA is low and PJVK is not expressed in the gut, high GSDMB and GSDMC expression is found almost restrictively in intestinal epithelial cells. Conversely, GSDMD and GSDME show more ubiquitous expression among various cell types in the gut. The N-terminal region of GSDMs can be liberated for pore formation by an array of proteases in response to pathogen- and danger-associated signals, but it is not fully understood what cell type-specific mechanisms activate intestinal GSDMs. The host relies on GSDMs for pathogen defense, tissue tolerance, and cancerous cell death; however, pro-inflammatory milieu caused by pyroptosis and excessive cytokine release may favor the development and progression of inflammatory bowel disease and cancer. Therefore, a thorough understanding of spatiotemporal mechanisms that control gasdermin expression, activation, and function is essential for the development of future therapeutics for intestinal disorders.


Assuntos
Gasderminas , Neoplasias , Humanos , Piroptose/fisiologia , Proteínas de Neoplasias/metabolismo , Citocinas/metabolismo , Neoplasias/metabolismo , Inflamassomos , Biomarcadores Tumorais
14.
Chem Biol Interact ; 390: 110873, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38237652

RESUMO

Paraquat (PQ)-induced acute kidney injury (AKI) progresses rapidly and is associated with high mortality rates; however, no specific antidote for PQ has been identified. Poor understanding of toxicological mechanisms underlying PQ has hindered the development of suitable treatments to combat PQ exposure. Gasdermin D (GSDMD), a key executor of pyroptosis, has recently been shown to enhance nephrotoxicity in drug-induced AKI. To explore the role of pyroptosis in PQ-induced AKI, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDMD. RNA sequencing analysis was performed to explore the mechanism of PQ induced nephrotoxicity. Herein, we demonstrated that PQ could induce pyroptosis in HK-2 cells and nephridial tissues. Mechanistically, PQ initiated GSDMD cleavage, and GSDMD knockout attenuated PQ-induced nephrotoxicity in vivo. Further analysis revealed that the accumulation of mitochondrial reactive oxygen species (ROS) induced p38 activation, contributing to PQ-induced pyroptosis. Furthermore, mitoquinone, a mitochondria-targeted antioxidant, reduced mitochondrial ROS levels and inhibited pyroptosis. Collectively, these findings provide insights into the role of GSDMD-dependent pyroptosis as a novel mechanism of PQ-induced AKI.


Assuntos
Injúria Renal Aguda , Piroptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Piroptose/fisiologia , Paraquat/toxicidade , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Mitocôndrias/metabolismo
15.
Neuroscience ; 536: 1-11, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37944579

RESUMO

Amyloid ß protein (Aß) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Aß induces apoptosis, and gasdermin-E (GSDME) expression can switch apoptosis to pyroptosis. In this study, we demonstrated that GSDME was highly expressed in the hippocampus of APP23/PS45 mouse models compared to that in age-matched wild-type mice. Aß treatment induced pyroptosis by active caspase-3/GSDME in SH-SY5Y cells. Furthermore, the knockdown of GSDME improved the cognitive impairments of APP23/PS45 mice by alleviating inflammatory response. Our findings reveal that GSDME, as a modulator of Aß and pyroptosis, plays a potential role in Alzheimer's disease pathogenesis and shows that GSDME is a therapeutic target for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Piroptose/fisiologia , Gasderminas , Peptídeos beta-Amiloides/metabolismo , Caspase 3/metabolismo
16.
Phytother Res ; 38(1): 82-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37807970

RESUMO

Ursolic acid (UA) is a naturally occurring pentacyclic triterpenoid widely found in fruits and vegetables. It has been reported that UA has anti-inflammatory effects. However, its efficacy and mechanism of action in the treatment of chronic prostatitis (CP) remain unclear. This study aimed to investigate the efficacy of UA treatment in CP and further explore the underlying mechanism. CP rat and pyroptosis cell models were established in vivo and in vitro, respectively. The efficacy of UA in inhibiting CP was evaluated via haematoxylin-eosin (HE) staining and measurement of inflammatory cytokines. RNA sequencing and molecular docking were used to predict the therapeutic targets of UA in CP. The expression of pyroptosis-related proteins was examined using various techniques, including immunohistochemistry, immunofluorescence, and flow cytometry. UA significantly ameliorated pathological damage and reduced the levels of proinflammatory cytokines in the CP model rats. RNA sequencing analysis and molecular docking suggested that NLRP3, Caspase-1, and GSDMD may be key targets. We also found that UA decreased ROS levels, alleviated oxidative stress, and inhibited p-NF-κB protein expression both in vivo and in vitro. UA improved pyroptosis morphology as indicated by electron microscope and inhibited the expression of the pyroptosis-related proteins NLRP3, Caspase-1, ASC, and GSDMD, reversed the levels of IL-1ß, IL-18, and lactate dehydrogenase in vivo and in vitro. UA can mitigate CP by regulating the NLRP3 inflammasome-mediated Caspase-1/GSDMD pathway. Therefore, UA may be a potential for the treatment of CP.


Assuntos
Inflamassomos , Prostatite , Humanos , Masculino , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Caspase 1/metabolismo , Prostatite/tratamento farmacológico , Simulação de Acoplamento Molecular , Gasderminas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/farmacologia
17.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5315-5325, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114121

RESUMO

This study aims to investigate the effects and the molecular mechanism of Huangdi Anxiao Capsules(HDAX)-containing serum in protecting the rat adrenal pheochromocytoma(PC12) cells from diabetes-associated cognitive dysfunction induced by high glucose and whether the mechanism is related to the regulation of NOD-like receptor thermal protein domain associated protein 3(NLRP3)-mediated pyroptosis. The PC12 cell model of diabetes-associated cognitive dysfunction induced by high glucose was established and mcc950 was used to inhibit NLRP3. PC12 cells were randomized into control, model, HDAX-containing serum, mcc950, and HDAX-containing serum+mcc950 groups. Methyl thiazolyl tetrazolium(MTT) assay was employed to determine the viability, and Hoechst 33258/PI staining to detect pyroptosis of PC12 cells. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1 beta(IL-1ß) and IL-18. Western blot was employed to determine the protein levels of postsynaptic density protein 95(PSD-95), NLRP3, apoptosis-associated speck-like protein containing a CARD(ASC), gasdermin D(GSDMD), GSDMD-N, and cleaved cysteinyl aspartate specific proteinase-1(caspase-1), and RT-PCR to determine the mRNA levels of NLRP3, ASC, GSDMD, and caspase-1. The immunofluorescence assay was adopted to measure the levels and distribution of NLRP3 and GSDMD-N in PC12 cells. Compared with the control group, the model group showed decreased cell proliferation, increased PI positive rate, down-regulated protein level of PSD-95, up-regulated protein levels of NLRP3, ASC, GSDMD-N, GSDMD, and cleaved caspase-1, up-regulated mRNA levels of NLRP3, ASC, GSDMD, and caspase-1, and elevated levels of IL-1ß and IL-18. Compared with the model group, HDAX-containing serum, mcc950, and the combination of them improved cell survival rate and morphology, decreased the PI positive rate, down-regulated the protein levels of NLRP3, ASC, GSDMD-N, GSDMD, and cleaved caspase-1 and the mRNA levels of NLRP3, ASC, GSDMD, and caspase-1, and promoted the secretion of IL-1ß and IL-18. The findings demonstrated that HDAX-containing serum can inhibit the pyroptosis-mediated by NLRP3 and protect PC12 cells from the cognitive dysfunction induced by high glucose.


Assuntos
Diabetes Mellitus , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Piroptose/fisiologia , Caspases , Glucose , RNA Mensageiro
18.
Cell Death Dis ; 14(12): 836, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104141

RESUMO

Pyroptosis is a novel regulated cell death (RCD) mode associated with inflammation and innate immunity. Gasdermin E (GSDME), a crucial component of the gasdermin (GSDM) family proteins, has the ability to convert caspase-3-mediated apoptosis to pyroptosis of cancer cells and activate anti-tumor immunity. Accumulating evidence indicates that GSDME methylation holds tremendous potential as a biomarker for early detection, diagnosis, prognosis, and treatment of tumors. In fact, GSDME-mediated pyroptosis performs a dual role in anti-tumor therapy. On the one side, pyroptotic cell death in tumors caused by GSDME contributes to inflammatory cytokines release, which transform the tumor immune microenvironment (TIME) from a 'cold' to a 'hot' state and significantly improve anti-tumor immunotherapy. However, due to GSDME is expressed in nearly all body tissues and immune cells, it can exacerbate chemotherapy toxicity and partially block immune response. How to achieve a balance between the two sides is a crucial research topic. Meanwhile, the potential functions of GSDME-mediated pyroptosis in anti-programmed cell death protein 1 (PD-1) therapy, antibody-drug conjugates (ADCs) therapy, and chimeric antigen receptor T cells (CAR-T cells) therapy have not yet been fully understood, and how to improve clinical outcomes persists obscure. In this review, we systematically summarize the latest research regarding the molecular mechanisms of pyroptosis and discuss the role of GSDME-mediated pyroptosis in anti-tumor immunity and its potential applications in cancer treatment.


Assuntos
Neoplasias , Piroptose , Humanos , Piroptose/fisiologia , Gasderminas , Linhagem Celular Tumoral , Apoptose/fisiologia , Inflamação , Caspase 3/metabolismo , Neoplasias/terapia
19.
Fish Shellfish Immunol ; 143: 109223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972744

RESUMO

Bis(2-ethylhexyl) phthalate (DEHP) is not only a widely used plasticizer but also a common endocrine disruptor that frequently lingers in water, posing a threat to the health of aquatic organisms. Quercetin (Que) is a common flavonol found in the plant kingdom known for its antioxidant, anti-inflammatory, and immunomodulatory effects. However, it is still unclear whether DEHP can cause pyroptosis and affect the expression of cytokines of grass carp L8824 cells and whether Que has antagonistic effect in this process. In our study, grass carp L8824 cells were treated into four groups after 24 h, namely NC group, DEHP group (1000 µM DEHP), Que group (5 µM Que), and DEHP + Que group (1000 µM DEHP + 5 µM Que). Our results indicate a significant increase in the level of ROS in L8824 cells after exposure to DEHP. DEHP upregulated oxidative stress markers (H2O2 and MDA) and downregulated antioxidant markers (CAT, GSH, SOD, and T-AOC). DEHP also upregulated MAPK and NF-κB signal pathway-related proteins and mRNA expressions (p-p38, p-JNK, p-EPK, and p65). As for cell pyroptosis and its related pathways, DEHP upregulated pyroptosis-related protein and mRNA expressions (GSDMD, IL-1ß, NLRP3, Caspase-1, LDH, pro-IL-18, IL-18, and ASC). Finally, DEHP can up-regulated cytokines (IL-6 and TNF-α) expression, down-regulated cytokines (IL-2 and IFN-γ) expression, and antimicrobial peptides (ß-defensin, LEAP2, and HEPC). The co-treatment of L8824 cells with DEHP and Que inhibited the activation of the ROS/MAPK/NF-κB axis, alleviated pyroptosis, and restored expression of immune-related indicators. Finally, NAC was applied to reverse intervention of oxidative stress. In summary, Que inhibited DEHP-induced pyroptosis and the influence on cytokine and antimicrobial peptide expression in L8824 cells by regulating the ROS/MAPK/NF-κB pathway. Our results demonstrate the threat to fish health from DEHP exposure and confirmed the harm of DEHP to the aquatic ecological environment and the detoxification effect of Que to DEHP, which provides a theoretical basis for environmental toxicology.


Assuntos
Carpas , Dietilexilftalato , Animais , NF-kappa B/metabolismo , Citocinas/genética , Citocinas/farmacologia , Antioxidantes/metabolismo , Dietilexilftalato/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Quercetina/farmacologia , Interleucina-18/farmacologia , Piroptose/fisiologia , Carpas/metabolismo , Peróxido de Hidrogênio/farmacologia , Linhagem Celular , RNA Mensageiro
20.
Cell Death Dis ; 14(11): 727, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945599

RESUMO

Excessive inflammation and tissue damage during severe influenza A virus (IAV) infection can lead to the development of fatal pulmonary disease. Pyroptosis is a lytic and pro-inflammatory form of cell death executed by the pore-forming protein gasdermin D (GSDMD). In this study, we investigated a potential role for GSDMD in promoting the development of severe IAV disease. IAV infection resulted in cleavage of GSDMD in vivo and in vitro in lung epithelial cells. Mice genetically deficient in GSDMD (Gsdmd-/-) developed less severe IAV disease than wildtype mice and displayed improved survival outcomes. GSDMD deficiency significantly reduced neutrophil infiltration into the airways as well as the levels of pro-inflammatory cytokines TNF, IL-6, MCP-1, and IL-1α and neutrophil-attracting chemokines CXCL1 and CXCL2. In contrast, IL-1ß and IL-18 responses were not largely impacted by GSDMD deficiency. In addition, Gsdmd-/- mice displayed significantly improved influenza disease resistance with reduced viral burden and less severe pulmonary pathology, including decreased epithelial damage and cell death. These findings indicate a major role for GSDMD in promoting damaging inflammation and the development of severe IAV disease.


Assuntos
Influenza Humana , Peptídeos e Proteínas de Sinalização Intracelular , Animais , Humanos , Camundongos , Gasderminas , Inflamação , Influenza Humana/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Piroptose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...